Induction of regulatory T cells by green tea polyphenol EGCG.
نویسندگان
چکیده
Regulatory T cells (Treg) are critical in maintaining immune tolerance and suppressing autoimmunity. The transcription factor Foxp3 serves as a master switch that controls the development and function of Treg. Foxp3 expression is epigenetically regulated by DNA methylation, and DNA methyltransferase (DNMT) inhibitors can induce Foxp3 expression in naive CD4(+) T cells. We showed that EGCG, a major green tea polyphenol, could act as a dietary DNMT inhibitor, and induced Foxp3 and IL-10 expression in CD4(+) Jurkat T cells at physiologically relevant concentrations in vitro. We further showed that mice treated with EGCG in vivo had significantly increased Treg frequencies and numbers in spleen and lymph nodes and had inhibited T cell response. Induction of Foxp3 expression correlated with a concomitant reduction in DNMT expression and a decrease in global DNA methylation. Our data suggested that EGCG can induce Foxp3 expression and increase Treg frequency via a novel epigenetic mechanism. While the DNMT inhibitory effects of EGCG was not as potent as pharmacologic agents such as 5-aza-2'-deoxycytidine, the ability of dietary agents to target similar mechanisms offers opportunities for potentially sustained and longer-term exposures with lower toxicity. Our work provides the foundation for future studies to further examine and evaluate dietary strategies to modulate immune function.
منابع مشابه
Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes.
The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), was found to induce differential effects between tumor cells and normal cells. Nevertheless, how normal epithelial cells respond to the polyphenol at concentrations for which tumor cells undergo apoptosis is undefined. The current study tested exponentially growing and aged primary human epidermal keratinocytes in respon...
متن کاملGreen tea polyphenol epigallocatechin gallate inhibits cell signaling by inducing SOCS1 gene expression.
Therapeutic effects of green tea involve an inhibitory function of its constituent polyphenol epigallocatechin gallate (EGCG) on cell signaling. The specificity and mechanism(s) by which EGCG inhibits cell signaling have remained unclear. Here, we demonstrate that green tea and EGCG induce suppressor of cytokine signaling 1 (SOCS1) gene expression, a negative regulator of specific cell signalin...
متن کاملPharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.
PURPOSE Green tea and green tea polyphenols have been shown to possess cancer preventive activities in preclinical model systems. In preparation for future green tea intervention trials, we have conducted a clinical study to determine the safety and pharmacokinetics of green tea polyphenols after 4 weeks of daily p.o. administration of epigallocatechin gallate (EGCG) or Polyphenon E (a defined,...
متن کاملGreen Tea Polyphenol Epigallocatechin-3-Gallate Attenuates Behavioral Abnormality in Hemi-Parkinsonian Rat
Background: Epigallocatechin gallate (EGCG), a major constituent of green tea, has been introduced as a potent free radical scavenger and can effectively reduce free radical-induced lipid peroxidation. Since free radical injury plays an important role in neuronal damage in Parkinson’s disease (PD), this study examined whether EGCG administration would reduce functional asymmetry in an experimen...
متن کاملThe antifolate activity of tea catechins.
A naturally occurring gallated polyphenol isolated from green tea leaves, (-)-epigallocatechin gallate (EGCG), has been shown to be an inhibitor of dihydrofolate reductase (DHFR) activity in vitro at concentrations found in the serum and tissues of green tea drinkers (0.1-1.0 micromol/L). These data provide the first evidence that the prophylactic effect of green tea drinking on certain forms o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Immunology letters
دوره 139 1-2 شماره
صفحات -
تاریخ انتشار 2011